

CSS Past Papers

Subject: Chemistry

Year: 2021

For CSS Solved Past Papers, Date Sheet, Online Preparation, Toppers Notes and FPSC recommended Books visit our website or call us:

CSSAspirants.Pk

0336 0535622

TIME ALLOWED: THREE HOURS

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

MAXIMUM MARKS = 20

CHEMISTRY, PAPER-I

PART-I (MCQS)

		CQS): MAXIMUM 30 MINUTES	()	IAXIMUM MAR IAXIMUM MAR		
NOTI	E: (i) (ii) (iii)	Part-II is to be attempted on the separattempt ONLY FOUR questions from All the parts (if any) of each Question places.	n PART-II. ALL questions ca			
	(iv) (v)	No Page/Space be left blank between be crossed.	n the answers. All the blank p	pages of Answer I	Book must	
	(vi) (vii)	1 1 1	part of the question will not be	considered.		
		<u>P</u> A	ART-II			
Q. 2.	(a)	Explain applications of Schrodinger like Atom.	wave equation to hydrogen	and hydrogen	(10)	
	(b)	(i) Give Molecular interpretation of en(ii) Explain factors affecting the rate of	- ·	(05) (05)	(10) (20	
Q. 3.	(a)	What are the uses of chelates.			(07)	
	(b)	State and explain Nomenclature of coor	dination complexes.		(07)	
	(c)	Explain VBT (Valence Bond Theory) of coordination complexes in detail.		(06) (20		
Q. 4.	(a)	Explain photoelectric effect and probab	ility density.		(10)	
	(b)	(i) Explain Eigen function & Eigen v(ii) Derive Schrödinger wave equation		(05) onal box. (05)	(10) (20	
Q. 5.	(a)	Predict molecular shapes using Valen model.	ce Shell Electron Pair Repu	ılsion (VESPER)	(10)	
	(b)	(i) Explain the experimental techniques(ii) Write a note on thermochemistry and		f reaction. (05) (05)	(10) (20	
Q. 6.	(a)	Derive a relation for dependence of Gibbs free energy on temperature or Gibbs Helmholtz equation.		(07)		
	(b)	What is isothermal process? Explain wan ideal gas.	ork done in isothermal reversi	ible expansion of	(07)	
	(c)	Explain fugacity and activity.			(06) (20	
Q. 7.	(a)	Discuss common ion effect and its indus	strial applications in detail.		(08)	
	(b)	Describe significance of pk_a , pk_b , pH .			(06)	
	(c)	Write a note on basic concepts of chemic	cal equilibrium.		(06) (20	
Q. 8.	Writ	Write notes on the following:-				
		(i) Debye-Huckel theory.			(07)	
		(ii) Nernst's equation.			(07)	
		(iii) Electrochemical series.			(06) (20	

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

CHEMISTRY, PAPER-II

TIME ALLOWED: THREE HOURS PART-I (MCQS) MAXIMUM MARKS = 20 PART-I(MCQS): MAXIMUM 30 MINUTES PART-II MAXIMUM MARKS = 80

NOTE: (i) Part-II is to be attempted on the separate Answer Book.

- (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
- (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
- (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
- (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- (vi) Extra attempt of any question or any part of the attempted question will not be considered.

PART-II

- Q. 2. (a) Describe factors that influence keto-enol tautomerization. Elaborate the statement with the (10) help of examples.
 - (b) Assign "R" or "S" configuration on each of the chiral centers of the given compounds. (10) (20)

- Q. 3. (a) Give the products expected (if any) when ethylbenzene reacts under following conditions:
 - (i) Br₂ in CCl₄ (dark)

(02 marks each) (10)

- (ii) HNO_3, H_2SO_4
- (iii) Conc. H₂SO₄

(iv)
$$C_2H_5$$
 C_1 , AlCl₃(1.1 equiv.), then H_2O

- (v) Alkaline KMnO₄
- **(b)** Account for the following:

(05 marks each) (10) (20)

- (i) Intramolecular H-bonding is stronger than intermolecular H-bonding
- (ii) Control of nucleophilic substitution reaction over elimination reactions
- Q. 4. (a) Write down reagents, reaction conditions and important steps for the following (10) conversions:
 - (i) Chlorobenzene to 2,4-dinitrophenyl hydrazine
 - (ii) Pyridine to 2-amino pyridine
 - (b) Write a note that substituents on aromatic rings dictate reactivity and orientation of the (10) (20) incoming electrophile in electrophilic aromatic substitution reactions.
- **Q. 5.** Draw detailed mechanisms for:

(04 marks each) (20)

CHEMISTRY, PAPER-II

(iv) OH
$$\stackrel{\text{i- SOCl}_2, CH_2N_2}{\text{ii- AgO, CH}_3OH}$$
 OCH₃

(v) $\stackrel{\text{i- NH}_2OH}{\text{ii- H}_2SO_4}$ NH

Q. 6. Account for the following:

(05 marks each)

(20)

(i) In DNA, a guanine residue reacts with electrophiles predominantly at the 7 and 3 positions of the ring system (see below). Suggest an explanation for this.

(ii) Outline the synthesis of following compound:

(iii) A Grignard reagent that is a key intermediate in an industrial synthesis of vitamin A can be synthesized in the following way:

of compounds A and C? The acid catalysed rearrangement of A to B takes p1.

(iv) What are compounds $\bf A$ and $\bf B$ in the reaction given below? Compound $\bf B$ has a strong IR absorption band in the $1650-1730~{\rm cm}^{-1}$ region and a broad strong band in the $3200-3550~{\rm cm}^{-1}$ region.

1-Methylcyclohexene
$$\frac{1. \text{ OsO}_4}{2. \text{ NaHSO}_3}$$
 A (C₇H₁₄O₂) $\frac{\text{CrO}_3}{\text{CH}_3\text{CO}_2\text{H}}$ B (C₇H₁₂O₂)

Q. 7. Explain the following:

(04 marks each) (20)

- (i) How can IR be used to help interpret NMR spectra?
- (ii) What are diastereotopic protons? Explain with examples.
- (iii) Determine the structure for a compound with formula $C_6H_4N_2O_4$ with following $^1H\text{-NMR}$ data:

 δ 8.76 t (1H), 8.38 dd (2H), 7.97 t (1H)

- (iv) Assign chemical shifts of each proton in the above structure.
- (v) Why ¹³C-NMR is less sensitive than ¹H-NMR?

Q. 8. Answer following questions:

(04 marks each) (20)

- (i) Comment if glycogenesis is anabolic or catabolic. Write down all steps involve in glycogenesis.
- (ii) Describe endergonic and exergonic reactions
- (iii) Write a note on anionic and cationic surfactants.
- (iv) Comment if waste glass can be used for cement production.
- (v) What is the chemical composition of nucleic acids and their biological significance?

****** Page 2 of 2