

CSS Past Papers Subject: Physics Year: 2020

For CSS Solved Past Papers, Date Sheet, Online Preparation, Toppers Notes and FPSC recommended Books visit our website or call us:

\bigoplus	CSSAspirants.Pk

0336 0535622

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2020 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-I

TIN PAF	IE ALI RT-I(M	OWED: THREE HOURS CQS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MARK MAXIMUM MARK	$\frac{1}{100} \frac{1}{100} \frac{1}$
NO	FE: (i) (ii) (iii) (iv) (v) (vi) (vi)	Part-II is to be attempted on the separat Attempt ONLY FOUR questions from I All the parts (if any) of each Question m Write Q. No. in the Answer Book in acco No Page/Space be left blank between th crossed. Extra attempt of any question or any part Use of Calculator is allowed.	e Answer Book. PART-II. ALL questions ust be attempted at one pla ordance with Q. No. in the ne answers. All the blank rt of the question will not	carry EQUAL marks. ace instead of at different Q.Paper. pages of Answer Book be considered.	places. must be
		PA	<u>RT – II</u>		
Q. 2.	(a) (b)	What is the curl of a vector field? Expl What is vector triple product? Show the $\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C})$	ain its physical significat at $\vec{B} - (\vec{A} \cdot \vec{B})\vec{C}$	nce.	(10) (6)
	(c)	If $\phi = 2x^3y^2z^4$ then find the div grad \emptyset).).		(4) (20)
Q. 3.	(a) (b)	State and explain Kelper's law of areas A spaceship of mass $m = 4.50 \times 1$ $r = 8.00 \times 10^6$ m and period $T_0 = 118.6$ the forward direction to decrease the space space space.	03 kg is in a circular min = 7.119×10^3 s who speed to 96.0% of the o	Earth orbit of radius en a thruster is fired in riginal speed. What is	(8) (6)
	(c)	the period T of the resulting elliptical of Which has greater magnitude, the and center) associated with its rotation on (relative to the center of its orbit) assoc	rbit? gular momentum of the its axis or the angular me tated with its orbital mot	Earth (relative to its omentum of the Earth cion around the Sun?	(6) (20)
O. 4 .	(a)	Explain the equivalence of mass and en	nergy.		(6)
	(b) (c)	Explain two tests of time dilation i.e m The mean lifetime of stationary much lifetime of high-speed muons in a b measured to be 16.000 μ s. To five sig of these cosmic-rays muons relative to	icroscopic and macrosco ons is measured to be 2 ourst of cosmic rays ob nificant figures, what is Earth?	pic clocks. 2.2000 ms. The mean oserved from Earth is the speed parameter <i>b</i>	(8) (6) (20)
Q. 5.	(a) (b)	What is viscosity? Explain in detail. W Caster oil, which has a density of 0.9 through a pipe of circular cross section 950 Pa. The pipe has a diameter of 2 emerging from the free end of the pipe s, a total of 1.23 kg has been collected	hat is the effect of temper 6×10^3 kg/m ³ at room a by a pump that maintain 2.6 cm and a length of the at atmospheric pressure ed. What is the coefficient	erature on viscosity? temperature, is forced ns a gauge pressure of 65 cm. The castor oil e is collected. After 90 ent of viscosity of the	(8) (5)
	(c)	A liquid flows through a horizontal p bends upward through a height of horizontal pipe of inner radius 6.14 cm in the two horizontal pipes is the same?	pipe whose inner radius 11.5 m where it wide . What must the volume ?	is 2.52 cm. The pipe ns and joins another flux be if the pressure	(7) (20)
Q. 6.	(a)	What is damped harmonic oscillator? V	Write its equation of moti	ion and find its	(10)
	(b)	The amplitude of a lightly damped os	scillator decreases by 3.0)% during each cycle.	(4)
	(c)	What percentage of the mechanical energy An insulating vessel containing 1.8 k water and hot plate being initially at 2 very slowly to 100°C, at which point change of the water during this process	ergy of the oscillator is log of water is placed on 0°C. The temperature of the water begins to boil	a hot plate, both the the hot plate is raised . What is the entropy	(6) (20)

PHYSICS, PAPER-I

- (5) Q.7. (a) What are travelling waves? Find the rate at which energy is transported by a wave travelling along a string.
 - (5) A string has linear density $\mu = 525$ g/m and is under tension T = 45 N. We send a **(b)** sinusoidal wave with frequency f = 120 Hz and amplitude $y_m = 8.5$ mm along the string. At what average rate does the wave transport energy?
 - (10) (20) Two sinusoidal waves with the identical wavelengths and amplitudes travel in **(c)** opposite directions along a string with a speed of 10 cm/s. If the time interval between instants when the string is flat is 0.50 s, what is the wavelength of the waves?
- (10)Explain the volume and pressure corrections in ideal gas law as suggested by van Q. 8. **(a)** der Waals.
 - (5) **(b)** For oxygen the van der Waals coefficients have been measured to be $a = 0.138 \text{ J} \cdot \text{m}^3/\text{mol}^2$ and $b = 3.18 \times 10^{-5} \text{ m}^3/\text{mol}$. Assume that 1.00 mol of oxygen at T = 50 K is confined to a box of volume 0.0224 m³. What pressure does the gas exert according to (a) the ideal gas law and (b) the van der Waals equation? (5) (20)
 - State and explain the zeroth law of thermodynamics. **(c)**

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION-2020** FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-II

TIME ALLOWED: THREE HOURSPART-I (MCQS)MAXIMUM MARKSPART-I(MCQS):MAXIMUM 30 MINUTESPART-IIMAXIMUM MARKS						20 80			
NOTI	E: (i)	Part-II is to be attempted on the separ	ate Answer Book.						
	(ii)	(ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.							
	(iii)	All the parts (if any) of each Question must be attempted at one place instead of at different							
	(:)	places.							
	(\mathbf{IV})	Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.							
	(\mathbf{v})	ino rage/space de leit diank delween the answers. All the blank pages of Answer Book must							
	(vi)	Extra attempt of any question or any part of the question will not be considered							
	(vii)	Use of Calculator is allowed.							
<u>PART – II</u>									
Q. 2.	(a)	(a) Discuss electric field of point charges, keeping in view the magnitude of force acting on test charge according to Coulomb's Law.							
	(b)	Derive Poisson's equation from	Gauss's Law Also write	the expression for	(8)				
		Laplace's equation							
	(c)	Find out the electric field due to charge of 2e at a distance of 26.5 $\times 10^{-12}$ m.							
		$(\mathcal{E}_{o} = 8.85 \times 10^{-12} \text{ C}^{2}/\text{N.m}^{2} \text{ and } e = 1.6$	$0x10^{-19}$ C)						
0.3.	(a)	Discuss in details the Energy Trans	sport and the Poynting Vec	ctor.	(8)				
2.0	(b)	Write the four Maxwell's Equation	s both in integral and diffe	erential forms.	(8)				
	(c)	Explain vector potential.	C		(4)	(20			
0.4.	(a)	State and explain Heisenberg's Uncertainty Principle.			(8)				
τ.	(b)	Discuss the phenomenon Barrier T	unneling.		(8)				
	(c)	Find the momentum of an electron mass of electron is 9.11×10^{-31} kg.	moving with a speed of 1	$.88 \times 10^6 \text{ m/s. where}$	(4)	(20)			
Q. 5.	(a)	What do you understand by semiconductors as n-type or p-type	the term Dopping? He with the dopping?	ow we can make	(8)				
	(b)	Discuss in details the N-P-N and P-	-N-P transistors.		(8)				
	(c)	Explain MOFET.			(4)	(20)			
0 (Discuss in detail the manager of Net	tural Dadiasativity		(0)				
Q. 0.	(a) (b)	Discuss in detail the radioactive de			(0)				
	(U) (C)	Find the energy released during t	tay. The alpha-decay of 238 U	Where the needed	(0) (4)	(20)			
	(0)	atomic masses are ²³⁸ U 238.050785	5 u, ²³⁴ Th 234.043539 u a	and ${}^{4}\text{He}$ 4.002603 <i>u</i> .	(1)				
Q. 7.	(a)	Discuss in detail the phenomenon of	of Fission.		(8)				
-	(b)	Explain the basic principles of Nuc	elear Reactors.		(8)				
	(c)	Briefly write about the methods of	detection of nuclear radiat	ion.	(4)	(20)			
Q. 8.	Wr	ite notes on any TWO of the following	: (1	10 each)		(20)			
	(a)	Dielectric medium and Electric Pol	larization						
	(b)	Ampere's Law							
	(c)	Accelerators							
