

CSS Past Papers Subject: Physics Year: 2021

For CSS Solved Past Papers, Date Sheet, Online Preparation, Toppers Notes and FPSC recommended Books visit our website or call us:

\bigoplus	CSSAspirants.Pk

0336 0535622

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PHYSICS, PAPER-I

TIME ALLOWED: THREE HOURS PART-I(MCQS):PART-I (MCQS)MAXIMUM MARKS = 24PART-I(MCQS):MAXIMUM 30 MINUTESPART-IIMAXIMUM MARKS = 84					20 30	
NOTE	 NOTE: (i) Part-II is to be attempted on the separate Answer Book. (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks. (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places. (iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must 				ent ust	
	 (vi) Extra attempt of any question or any part of the question will not be considered. (vii) Use of Calculator is allowed. 					
		PAL	<u>RT – II</u>			
Q. 2.	(a)	Describe Einstein postulates of special theory of Relativity. Express the difference between the special and the general theories of Relativity.			(10)	
	(b) Establish the energy-mass relationship and give its significance.			e.	(10)	(20)
Q. 3.	(a)	Differentiate between Fermi-Dirac, Bose-Einstein and Maxwell Statistics. Give application of each.			(10)	
	(b)	Draw a labelled diagram of a nuclear reactor and give significance of each part.			(10)	(20)
Q. 4.	(a)	Distinguish between the linear and angular momentum. Express Newton's second law in terms of the linear and angular motion.			(10)	
	(b)	Discuss the acceptor and rejecter ele	ectronic circuits.		(10)	(20)
Q. 5.	(a)	Describe and explain the Miller indices. Recognize the symbols <111>, [010], (111).		(10)		
	(b)	Discuss the closest packed crystal st	tructures.		(10)	(20)
Q. 6.	(a) (b)	Can you imagine a three dimensional diffraction grating? Describe in detail. Justify the dual nature of light with elaborative examples.		(10) (10)	(20)	
Q. 7.	(a)	State and explain the three laws of T	Thermodynamics.		(10)	
	(b)	What is a heat engine? Determine the of heat and delivers 2000 J of work	ne efficiency of the engine per cycle.	if it takes 10,000 J	(10)	(20)
Q. 8.	Wr	 te notes on any TWO of the following: (a) Mickelson-Morley experiment a (b) Unification of forces and Abdus (c) An essay on Large Hadron Parti 	and its latest usage in a re s Salam contribution. cal Accelerator.	(10 each) cent Nobel award.		(20)

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

(6)

PHYSICS, PAPER-II

TIME	ALL	OWED: THREE HOURS	PART-I (MCQS)	MAXIMUM MARKS = 20	
PART	'-I(MC	CQS): MAXIMUM 30 MINUTES	PART-II	MAXIMUM MARKS = 80	
NOTE	L: (i)	Part-II is to be attempted on the separ	ate Answer Book.		
	(ii)	Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.			
	(iii)	All the parts (if any) of each Question must be attempted at one place instead of at different			
		places.			
	(iv)	(iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.			
	(v)	No Page/Space be left blank between the answers. All the blank pages of Answer Book must			
	be crossed.				
	(vi)	Extra attempt of any question or any part of the question will not be considered.			
	(vii)	Use of Calculator is allowed.			
PART – II					
Q. 2.	(a)	Consider an infinitely long cyli	indrical insulating shel	ll of inner radius (8)	
		a, and outer radius b, and has a uniform volume charge density ρ . If a			
		line of charge density λ is pl	aced along the axis	of the shell then	
		determine the electric field inter	sity at a point r such	that (i) $a < r < b$	
		and (ii) $r > b$.	v 1		
	(b)	Determine the energy density for	a capacitor.	(6)	
	(\mathbf{c})	Discuss the Lorentz force	T	(6) (20)	
	(\mathbf{c})	Discuss the Lorentz force.		(0) (20)	

- **Q.3.** (a) Find the magnetic energy density for the magnetic field of the inductor. (10)
 - (b) Sate and explain the Lenz's law.
 - (c) Why is the work done by a magnetic field on a charged particle always (4) (20) zero?
- Q. 4. (a) Describe the properties of each of, an electron and the light, that show (8) their dual nature. (6)
 - (b) State and explain the de Broglie hypothesis?
 - (c) Metals A, B and C have work functions 2.2eV, 3.6eV and 4.8eV. If a
 (6) (20) light of wavelength 320nm is incident on these, then find
 - (i) Which metals exhibit photoelectric effect?
 - (ii) Maximum kinetic energy of photoelectron in each case?
- **Q.5.** (a) Determine the transmission co-efficient for a particle having energy E (14) incident on a rectangular barrier, so that $E < V_0$, the barrier is given by

 $V(x) = \begin{cases} +V_0 & for -a < x < a \\ 0 & for |x| > a \end{cases}$

- (b) For an operator \hat{A} , we know $[\hat{H}, \hat{A}] = 0$, where \hat{H} is the Hamiltonian (4) operator, what can we conclude about the eigen states of \hat{A} and the $\langle \hat{A} \rangle$?
- (c) Give two examples for the operator \hat{A} , given in part (b) above. (2) (20)

Page 1 of 2

PHYSICS, PAPER-II

Q. 6.	(a) (b) (c)	Descr band t Explai Find of 25 ^c	ibe the electrical conduction in different types theory. in the crystal structure of diamond. the carrier concentration of electrons in Silic °C.	of solids in terms of	(8) (6) (6) (20)
Q. 7.	(a) (b) (c)	What plot o Explai The st expec	at factors contribute to the stability of a nucleus? Draw and explain the of neutron number N versus atomic number Z for stable nuclei. lain the use of chain reaction in relation to a nuclear reactor. stable isotope of potassium is ¹⁹ K, what kind of radioactivity do you ect from ¹⁸ K? Give reasons.		(10) (6) (4) (20)
Q. 8.	Write	notes (a) (b)	on any TWO of the following: Poynting Vector Fusion in stars	(10 marks each)	(20)
		(c)	MOSFET		
