

# **CSS Past Papers** Subject: Pure Mathematics

# Year: 2018

For CSS Solved Past Papers, Date Sheet, Online Preparation, Toppers Notes and FPSC recommended Books visit our website or call us:





0336 0535622



### FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION-2018** FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT **PURE MATHEMATICS**

(10)

<u>Page 1 of 2</u>

| TIME ALLOWED: THREE HOURS |                                                                                          | MAXIMUM MARKS = 100                                      |  |  |
|---------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| NOTE: (i)                 | Attempt FIVE questions in all by sele                                                    | cting TWO Questions each from SECTION-A&B and            |  |  |
|                           | ONE Question from SECTION-C. AL                                                          | L questions carry EQUAL marks.                           |  |  |
| ( <b>ii</b> )             | All the parts (if any) of each Question                                                  | n must be attempted at one place instead of at different |  |  |
|                           | places.                                                                                  |                                                          |  |  |
| (iii)                     | Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. |                                                          |  |  |
| (iv)                      | No Page/Space be left blank between                                                      | the answers. All the blank pages of Answer Book must     |  |  |
|                           | be crossed.                                                                              |                                                          |  |  |
| <b>(v)</b>                | Extra attempt of any question or any pa                                                  | art of the attempted question will not be considered.    |  |  |
| ( <b>vi</b> )             | Use of Calculator is allowed.                                                            |                                                          |  |  |
|                           |                                                                                          |                                                          |  |  |

# <u>SECTION-A</u>

| Q. 1. | (a)                                                                                                                                                                                                                                      | Let <i>H</i> and <i>K</i> be normal subgroups of a group <i>G</i> . Show that <i>HK</i> is a normal subgroup of <i>G</i> . |                  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------|--|
|       | (b)                                                                                                                                                                                                                                      | Let <i>H</i> and <i>K</i> be normal subgroups of a group <i>G</i> such that $H \subseteq K$ . Then show that               |                  |  |
|       |                                                                                                                                                                                                                                          | $(G/H)/(K/H) \cong G/K$                                                                                                    |                  |  |
| Q. 2. | <b>(a)</b>                                                                                                                                                                                                                               | ) Show that every finite integral domain is a field.                                                                       |                  |  |
|       | <b>(b)</b>                                                                                                                                                                                                                               | Consider the following linear system,<br>x + 2y + z = 3                                                                    |                  |  |
|       |                                                                                                                                                                                                                                          | ay + 5z = 10                                                                                                               |                  |  |
|       |                                                                                                                                                                                                                                          | 2x + 7y + az = b                                                                                                           |                  |  |
|       |                                                                                                                                                                                                                                          | (i) Find the values of <i>a</i> for which the system has unique solution.                                                  |                  |  |
|       |                                                                                                                                                                                                                                          | (ii) Find the values of the pair ( <i>a</i> , <i>b</i> ) for which the system has more than one solution.                  |                  |  |
| Q. 3. | (a)                                                                                                                                                                                                                                      | Find condition on <i>a</i> , <i>b</i> , <i>c</i> so that vector $(a,b,c)$ in $\mathbb{R}^3$ belongs to                     | (10)             |  |
|       | $W= span \{u_1, u_2, u_3\} \text{ where } u_1 = (1, 2, 0),  u_2 = (-1, 1, 2),  u_3 = (0, 1)$ (b) Let $W_1$ and $W_2$ be finite dimensional subspaces of a vector space $V$ . So $dimW_1 + dimW_2 = dim (W_1 \cap W_2) + dim (W_1 + W_2)$ |                                                                                                                            | (10) <b>(20)</b> |  |

# **SECTION-B**

Q.4. (a) Let  $f(x) = \begin{cases} x^2 & if \ x \le 1 \\ x & if \ x > 1 \end{cases}$ 

Does the Mean Value Theorem hold for f on  $\left[\frac{1}{2}, 2\right]$ .

(**b**) Calculate the. 
$$\lim_{x \to 0} \frac{lnsin3x}{lnsinx}$$
 (10) (20)

**Q.5.** (a) Evaluate 
$$\int_{-1}^{5} |x-2| dx$$
. (10)

(b) Prove that 
$$f_{xy}(0,0) \neq f_{yx}(0,0)$$
 if (10) (20)  

$$f(x,y) = \begin{cases} x^2 y \sin \frac{1}{x} & \text{when } x, y \text{ are not both } 0 \\ 0 & \text{when } x, y \text{ are both } 0 \end{cases}$$
Page 1 of 2

## **PURE MATHEMATICS**

- **Q. 6.** (a) Find the area of the region bounded by the cycloid (10)  $x = a(\theta - \sin \theta), \ y = a(1 - \cos \theta)$  and its base.
  - (b) Find the equation of a plane through (5,-1,4) and perpendicular to each of the planes (10) (20)

x + y - 2z - 3 = 0 and 2x - 3y + z = 0

### **SECTION-C**

**Q.7.** (a) Express  $\cos^5 \theta \sin^3 \theta$  in a series of sines of multiples of  $\theta$ . (10)

(b) Use Cauchy's Residue Theorem to evaluate the integral  $\int_C \frac{5z-2}{Z(Z-1)} dz$  where C (10) (20) is the circle |z| = 2, described counter clock wise.

**Q. 8.** (a) Find the Laurent series that represent the function  $f(z) = \frac{z+1}{z-1}$  in the domain (10)

$$l < |z| < \infty$$
.

(b) Expand f(x) = sinx in a Fourier cosine series in the interval  $0 \le x \le \pi$ . (10) (20)

\*\*\*\*\*