

CSS Aspirants
 Empowering Future Officers

CSS Past Papers Subject: Pure Mathematics Year: 2018

For CSS Solved Past Papers, Date Sheet, Online Preparation, Toppers Notes and FPSC recommended Books visit our website or call us:
(- CSSAspirants.Pk
03360535622

FEDERAL PUBLIC SERVICE COMMISSION
COMPETITIVE EXAMINATION-2018
FOR RECRUITMENT TO POSTS IN BS-17
UNDER THE FEDERAL GOVERNMENT
PURE MATHEMATICS

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS = 100
NOTE: (i) Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A\&B and ONE Question from SECTION-C. ALL questions carry EQUAL marks.
(ii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
(iii) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
(iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
(v) Extra attempt of any question or any part of the attempted question will not be considered.
(vi) Use of Calculator is allowed.

SECTION-A

Q. 1. (a) Let H and K be normal subgroups of a group G. Show that $H K$ is a normal subgroup of G.
Let H and K be normal subgroups of a group G such that $H \subseteq K$. Then show that

$$
\begin{equation*}
(G / H) /(K / H) \cong G / K \tag{10}
\end{equation*}
$$

Q. 2. (a) Show that every finite integral domain is a field.
(b) Consider the following linear system,

$$
\begin{gather*}
x+2 y+z=3 \tag{10}\\
a y+5 z=10 \\
2 x+7 y+a z=b
\end{gather*}
$$

(i) Find the values of a for which the system has unique solution.
(ii) Find the values of the pair (a, b) for which the system has more than one solution.
Q. 3. (a) Find condition on a, b, c so that vector (a, b, c) in $\mathrm{R}^{\mathbf{3}}$ belongs to
$W=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\}$ where $u_{1}=(1,2,0), \quad u_{2}=(-1,1,2), u_{3}=(3,0,-4)$.
(b) Let W_{1} and W_{2} be finite dimensional subspaces of a vector space V. Show that $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}=\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right)$

SECTION-B

Q.4. (a) Let $f(x)= \begin{cases}x^{2} & \text { if } x \leq 1 \\ x & \text { if } x>1\end{cases}$

Does the Mean Value Theorem hold for f on $\left[\frac{1}{2}, 2\right]$.
(b) Calculate the. $\lim _{x \rightarrow 0} \frac{\ln \sin 3 x}{\ln \sin x}$
Q. 5. (a) Evaluate $\int_{-1}^{5}|x-2| d x$.
(b) Prove that $f_{x y}(0,0) \neq f_{y x}(0,0)$ if

$$
f(x, y)=\left\{\begin{align*}
x^{2} y \sin \frac{1}{x} & \text { when } x, y \text { are not both } 0 \tag{10}\\
0 & \text { when } x, y \text { are both } 0
\end{align*}\right.
$$

Q. 6. (a) Find the area of the region bounded by the cycloid

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta) \text { and its base. }
$$

(b) Find the equation of a plane through $(5,-1,4)$ and perpendicular to each of the planes

$$
\begin{equation*}
x+y-2 z-3=0 \text { and } 2 x-3 y+z=0 \tag{10}
\end{equation*}
$$

SECTION-C

Q. 7. (a) Express $\cos ^{5} \theta \sin ^{3} \theta$ in a series of sines of multiples of θ.
(b) Use Cauchy's Residue Theorem to evaluate the integral $\int_{C} \frac{5 z-2}{Z(Z-1)} d z$ where C is the circle $|z|=2$, described counter clock wise.
Q. 8. (a) Find the Laurent series that represent the function $f(z)=\frac{z+1}{z-1}$ in the domain $1<|z|<\infty$.
(b) Expand $f(x)=\sin x$ in a Fourier cosine series in the interval $0 \leq x \leq \pi$.

